skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sant, Gaurav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 18, 2025
  2. Our multi-task neural network approach simultaneously predicts the concentration of all types of rare earth elements (REEs) in coal ashes, with an improved accuracy and robustness as compared to conventional single-task neural networks. 
    more » « less
  3. It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations. 
    more » « less
  4. The dissolution kinetics of Portland cement is a critical factor in controlling the hydration reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions and changes to particle surfaces. As a result, current analytical models are unable to accurately predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of C3S in the undersaturated solvent. The DF model takes into account several variables, including the measurement method (i.e., reactor connected to inductive coupled plasma spectrometer and flow chamber with vertical scanning interferometry), temperature, and physicochemical properties of solvents. Next, the DF model evaluates the influence of each variable on the dissolution rate of C3S, and this information is used to develop a closed-form analytical model that can predict the dissolution rate of C3S. The coefficients and constant of the analytical model are optimized in two scenarios: generic and alkaline solvents. The results show that both the DF and analytical models are able to produce reliable predictions of the dissolution rate of C3S when it is undersaturated and far from equilibrium. 
    more » « less